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Abstract. In this paper the Laguerre–Gaussian (LG) series representation of the two-
dimensional fractional Fourier transform is derived from conventional ordinary Fourier transform
in polar coordinates. The kernel of this series representation is constituted by Laguerre–Gaussian
functions, from which the series representation of a fractional Hankel transform can be easily
derived. The connection between the gradient-index medium and the LG series representation
is illustrated as an example of its applications.

The fractional Fourier transform (FrFT) was derived by Namias [1] as a new mathematical
tool in order to deal with some problems in quantum mechanics. The key step in
his derivation is to write the eigenvalue as the form of a semigroup operator after the
introduction of fractional order in the eigenvalue equation of one-dimensional (1D) Fourier
transform (FT). As a result, the integral representation of FrFT was heuristically defined
as well as the series representation. The scope of its application was greatly widened after
the notation of FrFT was introduced into optics by Ozaktas and Mendlovic [2–4] through
a different approach, theGedankenexperimentwith gradient-index (GRIN) media. In other
words, the expression, representing the propagation of light waves in the GRIN media, was
verified to satisfy the properties of a semigroup. Therefore, this expression was considered
as a two-dimensional (2D) FrFT whose kernel in rectangular coordinates is symbolized by
a summation of Hermite–Gaussian (HG) functions and can be decomposed mathematically
as a product of two 1D FrFT kernels. This result is regarded as the extension of 1D FrFT
to the 2D case [5, 6], for the reason that HG functions are fundamentally the eigenfunctions
for 1D FT. Conversely, the kernel of 2D FT in polar coordinates is of a 2D origin. The
motivation for this paper is to derive a different, yet equivalent, series representation of the
2D FrFT form 2D FT in the plane-polar coordinates.

Let us begin with a two-dimensional Fourier transform in rectangular coordinates:

f2(u1, u2) = 1

2π

∫ +∞
0

dx1

∫ +∞
0

dx2 f1(x1, x2) exp[i(x1u1+ x2u2)]. (1)
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Whenx1 ≡ r1 cosθ , x2 ≡ r1 sinθ , u1 ≡ r2 cosϕ, andu2 ≡ r2 sinϕ, we express the FT
in plane-polar coordinates:

f2(r2, ϕ) = 1

2π

∫ +∞
0

dr1 r1

∫ 2π

0
dθ exp[ir1r2 cos(θ − ϕ)] f1(r1, θ). (2)

The FT and inverse FT can be written in the operator form:

f2(r2, ϕ) = F 1[f1(r1, θ)]

f1(r1, θ) = F−1[f2(r2, ϕ)].

The operatorsF 1 and F−1, denoting the 2D FT and its inverse transform, are complex
conjugates of each other and satisfy the relationsF−1F 1 = F 1F−1 = 1.

The eigenvalue equation for operatorF 1 is given by

F 1[9pm(r1) exp(imθ)] = (−1)p(i)m9pm(r2) exp(imϕ) (3)

with the Laguerre–Gaussian (LG) function9pm(r):

9pm(r) =
[

2(p!)

(p +m)!
]1/2

exp
(− 1

2r
2
)
rmLmp (r

2) (4)

whereLmp is the generalized Laguerre polynomial. Three integral relations [9] are employed
in the derivation of equations (3) and (4). Namely, the following two expressions are used
to prove the eigenvalue equation:

exp
(− 1

2x
)
xm/2Lmp (x) = 1

2(−1)p
∫ +∞

0
dy exp

(− 1
2y
)
Jm(
√
xy) ym/2Lmp (y).

In the above, lety = r2
1, x = r2

2, then it is proved that;

9pm(r2) = (−1)p
∫ +∞

0
dr1 r19pm(r1) Jm(r1r2).

Another integral relation to determine the normalized constant is∫ +∞
0

dx exp(−x) xm Lmp (x) Lmp (x) =
(p +m)!
p!

δpm.

Then, rewrite equation (3) in a different form:

F 1[9pm(r1) exp(imθ)] = exp
[
i(2p +m) 1

2π × 1
]
9pm(r2) exp(imϕ). (5)

We now assume that the FrFT operatorFa, satisfies the eigenvalue equation:

Fa[9pm(r1) exp(imθ)] = exp
[
i(2p +m) 1

2π × a
]
9pm(r2) exp(imϕ). (6)

This equation implies that9pm(r) exp(imθ) is the eigenfunction of the operatorFa with
eigenvalue exp

[
i(2p +m) 1

2π × a
]
. As is well known, any square-integral functiong(r, θ)

can be expanded in terms of this eigenfunction:

g(r, θ) =
∞∑
m=0

∞∑
p=m

Apm9pm(r) exp(imθ) (7)

with

Apm = 1

2π

∫ 2π

0
dθ
∫ +∞

0
dr r g(r, θ)9pm(r) exp(−imθ). (8)

In view of equations (6)–(8), we give the definition of the FrFT.
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Definition. The LG series representation of a two-dimensional FrFT in polar coordinates
is defined as

Fa[g(r, θ)] =
∞∑
m=0

∞∑
p=m

exp
[
i(2p +m) 1

2π × a
]
Apm9pm(r) exp(imθ) (9)

where9pm(r) andApm satisfy equations (4) and (8), respectively.

The above relation is called the Laguerre–Gaussian series representation of a 2D FrFT,
which is proved to be equivalent to the HG series representation defined by Ozaktas
and Mendlovic. Nevertheless, in contrast to the HG series representation, the LG series
representation is intrinsically two dimensional.

Consider a GRIN medium with the refractive-index distributionn(r):

n2(r) = n2
1[1− (n2/n1)r

2]. (10)

The scalar Helmholtz wave equation in cylindric coordinates [8] is written as[
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
+ k2

]
Epm(r, θ, z) = 0 (11)

wherek2 = k2
1 − k2

2r
2 with k = 2πn/λ, k1 = 2πn1/λ andk2 = 2π

√
n1n2/λ.

Denoting the propagating eigenmode, the solutionEpm(r, θ, z) is the LG function
defined in equations (12) and (13):

Epm(r, θ, z) = 2

ω2
9pm

(√
2r

ω

)
exp(imθ) exp(−iβpmz) (12)

with

βpm = k1

[
1− 1

k1

√
n2

n1
(4p + 2m+ 2)

]1/2

' k1−
√
n2

n1
(2p +m+ 1) (13)

whereω = (2/k1)
1/2(n1/n2)

1/4.

The fieldfz(r, θ) is the fieldf0(r, θ) at planez = 0 after propagating a distance ofz:

fz(r, θ) = 2

ω2

∞∑
m=0

∞∑
p=m

A′pm9pm

(√
2r

ω

)
exp(imθ) exp(−iβpmz) (14)

with

A′pm =
1

2π

∫ 2π

0
dθ
∫ +∞

0
dr r f0(r, θ)

2

ω2
9pm

(√
2r

ω

)
exp(−imθ). (15)

DefiningL = (π/2)√n1/n2 anda = z/L, we have

fz(r, θ) = T [f0(r, θ)] = 2

ω2

∞∑
m=0

∞∑
p=m

A′pm9pm

(√
2r

ω

)
exp(imθ) exp[−iβpmaL]. (16)

According to equation (13),

exp[−iβpmaL] = exp
[−ik1aL+ i(2p +m+ 1) 1

2πa
]
. (17)

Changing the coordinates in equations (14)–(16) withr ′ ≡ √2r/ω and defining

g(r ′, θ) ≡ g
(√

2r

ω
, θ

)
≡ f0(r, θ) (18)
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thus,

T [f0(r, θ)] = 2

ω2

∞∑
m=0

∞∑
p=m

A′pm9pm(r
′) exp(imθ) exp[−iβpmaL] (19)

with

A′pm =
1

2π

∫ 2π

0
dθ
∫ +∞

0
dr ′ r ′ g(r ′, θ)9pm(r ′) exp(−imθ). (20)

Finally, we obtain

T [f0(r, θ)] = 2

ω2
exp

(−ik1aL+ 1
2iπa

)
Fa[g(r ′, θ)]. (21)

It is concluded from the above expression that the propagation of light waves in isotropic
GRIN media can be described by the LG series representation of the 2D FrFT as well as
the HG series representation. However, the HG series representation is a more general
framework for the reason that it can also describe the elliptic GRIN media [10].

An input functiong(r, θ) with rotational symmetry, has the form;

g(r, θ) = g0(r) exp(imθ). (22)

Hence, a simplified form forFa is

Fa[g0(r) exp(imθ)] =
∞∑
p=m

exp
[
i(2p +m) 1

2π × a
]
Apm9pm(r) exp(imθ) (23)

with

Apm =
∫ +∞

0
dr r g0(r)9pm(r).

Obviously there is only one summation in the expression that offers facilities in
analysis and calculations. Another application of the LG representation is that the series
representation of a fractional Hankel transform (FrHT) can be easily derived from it. In
[11], there exists a simple relation between this FrFT operatorFa and anath-order FrHT
operatorHa

m, wherem represents themth-order Bessel function, namely

Ha
m = exp

(−ima 1
2π
)
Fa. (24)

From the above relation and by the employment of equations (8) and (9), the series
representation of the FrHT can be defined as

Ha
m[f (r)] =

∞∑
p=m

exp(i2pa)Bpm 9pm(r) (25)

with

Bpm =
∫ +∞

0
dr r f (r)9pm(r). (26)

In summary, we have derived the series representation of 2D FrFT in plane-polar
coordinates, which has advantages in studies of the physical systems with circular symmetry
such as the isotropic GRIN fibre, circular laser cavities [7] and quantum systems [1].
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